Bounds of the Neuman-Sándor Mean Using Power and Identric Means

نویسندگان

  • Yu-Ming Chu
  • Bo-Yong Long
  • Wenchang Sun
چکیده

and Applied Analysis 3 It is the aim of this paper to find the best possible lower power mean bound for the Neuman-Sándor mean M(a, b) and to present the sharp constants α and β such that the double inequality α < M(a, b) I (a, b) < β (17) holds for all a, b > 0 with a ̸ = b. 2. Main Results Theorem 1. p0 = (log 2)/ log [2 log(1 + √2)] = 1.224 . . . is the greatest value such that the inequality M(a, b) > Mp 0 (a, b) (18) holds for all a, b > 0 with a ̸ = b. Proof. From (1) and (2), we clearly see that both M(a, b) andMp(a, b) are symmetric and homogenous of degree one. Without loss of generality, we assume that b = 1 and a = x > 1. Let p0 = (log 2)/ log [2 log(1 + √2)], then from (1) and (2) one has logM(x, 1) − logMp 0 (x, 1) = log x − 1 2sinh ((x − 1) / (x + 1)) − 1 p0 log x p 0 + 1 2 . (19) Let f (x) = log x − 1 2sinh ((x − 1) / (x + 1)) − 1 p0 log x p 0 + 1 2 . (20) Then, simple computations lead to lim x→1 f (x) = 0, (21) lim x→+∞ f (x) = 1 p0 log 2 − log [2sinh (1)] = 0, (22) f 󸀠 (x) = (1 + x p 0 −1 ) f1 (x) (x − 1) (x0 + 1) sinh ((x − 1) / (x + 1)) , (23) where f1 (x) = − √2 (x − 1) (x p 0 + 1) (x + 1) (x0 + 1)√1 + x + sinh ( − 1 x + 1 ) , f1 (1) = 0, (24) lim x→+∞ f1 (x) = − √2 + sinh (1) = −0.5328 ⋅ ⋅ ⋅ < 0, (25) f 󸀠 1 (x) = √2 (x − 1) f2 (x) (x + 1) 2 (x0 + 1) 2 (1 + x) 3/2 , (26) where f2 (x) = 1 + x + 2x 2 + (p0 − 1) x p 0 −2 − x p 0 −1 + x p 0 +1 − (p0 − 1) x p 0 +2 − 2x 2p 0 −2 − x 2p 0 −1 − x 2p 0 , f2 (1) = 0, (27) lim x→+∞ f2 (x) = −∞, (28) f 󸀠 2 (x) = 1 + 4x + (p0 − 1) (p0 − 2) x p 0 −3 − (p0 − 1) x p 0 −2 + (p0 + 1) x p 0 − (p0 − 1) (p0 + 2) x p 0 +1 − 4 (p0−1) x 2p 0 −3 −(2p0−1) x 2p 0 −2 −2p0x 2p 0 −1 , f 󸀠 2 (1) = 4 (4 − 3p0) > 0, (29) lim x→+∞ f 󸀠 2 (x) = −∞, (30) f 󸀠󸀠 2 (x) = 4 + (p0 − 1) (p0 − 2) (p0 − 3) x p 0 −4 − (p0 − 1) (p0 − 2) x p 0 −3 + p0 (p0 + 1) x p 0 −1 − (p0 − 1) (p0 + 2) (p0 + 1) x p 0 − 4 (p0 − 1) (2p0 − 3) x 2p 0 −4 − 2 (2p0 − 1) (p0 − 1) x 2p 0 −3 − 2p0 (2p0 − 1) x 2p 0 −2 , f 󸀠󸀠 2 (1) = 4 (2p0 − 1) (4 − 3p0) > 0, (31) lim x→+∞ f 󸀠󸀠 2 (x) = −∞, (32) f 󸀠󸀠󸀠 2 (x) = (p0 − 1) x p 0 −5 f3 (x) , (33) where f3 (x) = − (2 − p0) (3 − p0) (4 − p0) − (2 − p0) (3 − p0) x + p0 (p0 + 1) x 3 − p0 (p0 + 1) (p0 + 2) x 4 − 8 (3−2p0) (2−p0) x p 0+2 (2p0−1) (3−2p0) x p 0 +1 − 4p0 (2p0 − 1) x p 0 +2 < − (2 − p0) (3 − p0) (4 − p0) − (2 − p0) (3 − p0) x + p0 (p0 + 1) x 4 − p0 (p0 + 1) (p0 + 2) x 4 − 8 (3 − 2p0) (2 − p0) x p 0 + 2 (2p0 − 1) (3 − 2p0) x p 0 +2 − 4p0 (2p0 − 1) x p 0 +2 = − (2 − p0) (3 − p0) (4 − p0) − (2 − p0) (3 − p0) x − p0(p0 + 1) 2 x 4 − 8 (3 − 2p0) (2 − p0) x p 0 − 2 (2p0 − 1) (4p0 − 3) x p 0 +2 < 0, (34) for x > 1. 4 Abstract and Applied Analysis Equation (33) and inequality (34) imply that f 2 (x) is strictly decreasing on [1, +∞). Then, the inequality (31) and (32) lead to the conclusion that there exists x1 > 1, such that f 󸀠 2 (x) is strictly increasing on [1, x1] and strictly decreasing on [x1, +∞). From (29) and (30) together with the piecewise monotonicity of f 2 (x), we clearly see that there exists x2 > x1 > 1, such that f2(x) is strictly increasing on [1, x2] and strictly decreasing on [x2, +∞). It follows from (26)–(28) and the piecewise monotonicity of f2(x) that there exists x3 > x2 > 1, such that f1(x), is strictly increasing on [1, x3] and strictly decreasing on [x3, +∞). From (23)–(25) and the piecewise monotonicity of f1(x) we see that there exists x4 > x3 > 1, such that f(x) is strictly increasing on (1, x4] and strictly decreasing on [x4, +∞). Therefore, M(x, 1) > Mp 0 (x, 1) for x > 1 follows easily from (19)–(22) and the piecewise monotonicity of f(x). Next, we prove that p0 = (log 2)/ log [2 log(1 + √2)] = 1.224 . . . is the greatest value such that M(x, 1) > Mp 0 (x, 1) for all x > 1. For any ε > 0 and x > 1, from (1) and (2), one has lim x→+∞ Mp 0 +ε (x, 1) M (x, 1) = lim x→+∞ [( 1 + x p 0 +ε 2 ) 1/(p 0 +ε) 2sinh ((x − 1) / (x + 1)) x − 1 ] = 2 −1/(p 0 +ε) × 2sinh (1) = 2 ε/p 0 (p 0 +ε) > 1. (35) Inequality (35) implies that for any ε > 0, there existsX = X(ε) > 1, such that M(x, 1) < Mp 0 +ε(x, 1) for x ∈ (X, +∞). Remark 2. 4/3 is the least value such that inequality (16) holds for all a, b > 0 with a ̸ = b, namely, M4/3(a, b) is the best possible upper power mean bound for the Neuman-Sándor meanM(a, b). In fact, for any ε ∈ (0, 4/3) and x > 0, one has M4/3−ε (1 + x, 1) − M (1 + x, 1) = [ (1 + x) 4/3−ε + 1 2 ] 1/(4/3−ε) − x 2sinh (x/ (2 + x)) . (36) Letting x → 0 and making use of Taylor expansion, we get [ (1 + x) 4/3−ε + 1 2 ] 1/(4/3−ε) − x 2sinh (x/ (2 + x)) = [1 + 4 − 3ε 6 x + (4 − 3ε) (1 − 3ε) 36 x 2 + o (x 2 )] 1/(4/3−ε) − x x − (1/2) x + (5/24) x + o (x) = [1 + 1 2 x + 1 − 3ε 24 x 2 + o (x 2 )] − [1 + 1 2 x + 1 24 x 2 + o (x 2 )] = − ε 8 x 2 + o (x 2 ) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

Neuman–sándor Mean, Asymptotic Expansions and Related Inequalities

The subject of this paper is a systematic study of inequalities of the form (1−μ)M1 +μM3 M2 (1−ν)M1 +νM3 which cover Neuman-Sándor mean and some classical means. Furthermore, following inequalities with optimal parameters were proved: μ 1 H(s,t) +(1−μ) 1 NS(s,t) 1 A(s,t) ν 1 H(s,t) +(1−ν) 1 NS(s,t)

متن کامل

Optimal estimations of some Sei¤ert type means by Lehmer means

Let us consider the logarithmic mean L; the identric mean I; the trigonometric means P and T de…ned by H. J. Sei¤ert, the hyperbolic mean M de…ned by E. Neuman and J. Sándor, and the Gini mean J . The optimal estimations of these means by power means Ap and also some of the optimal estimations by Lehmer means Lq are known. We prove two new optimal estimation by Lehmer means L0 < M < L1=6 and L1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014